

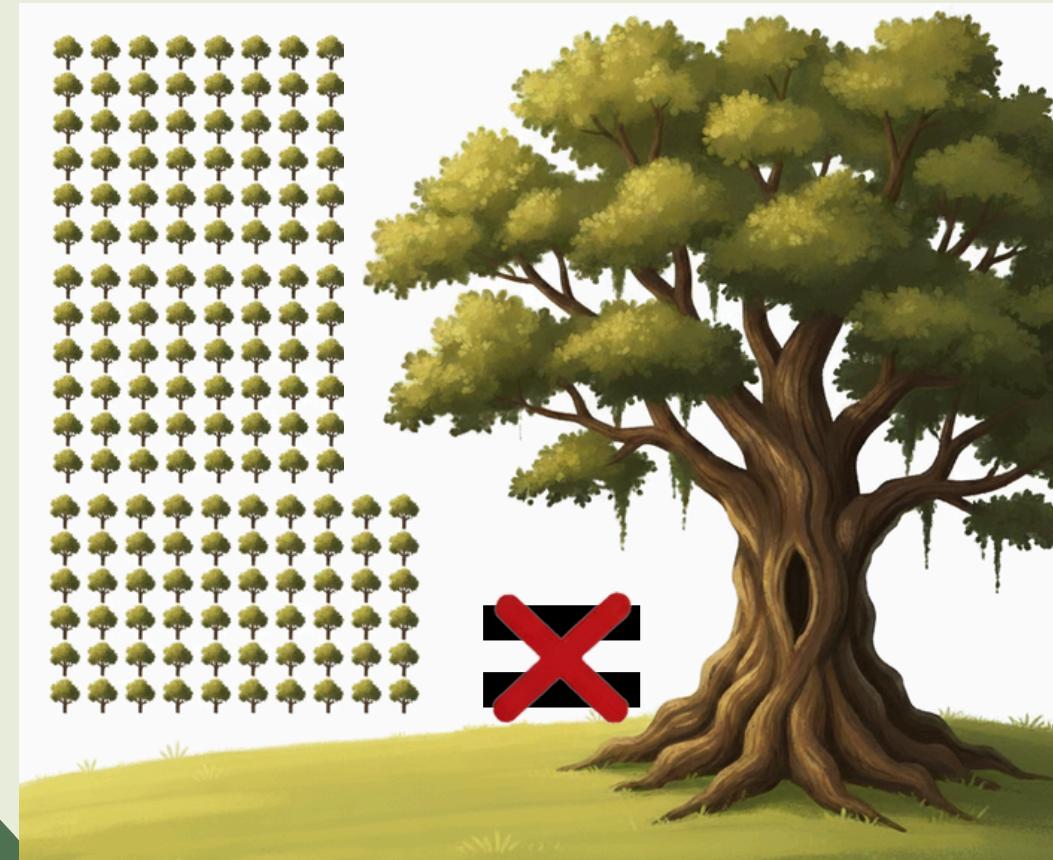
Why one mature tree out-values 100 newly planted seedlings

How to manage that tree appropriately

By Island Lescure
Consulting Arborist

Annual Ecosystem Value: The Numbers

100 Seedlings

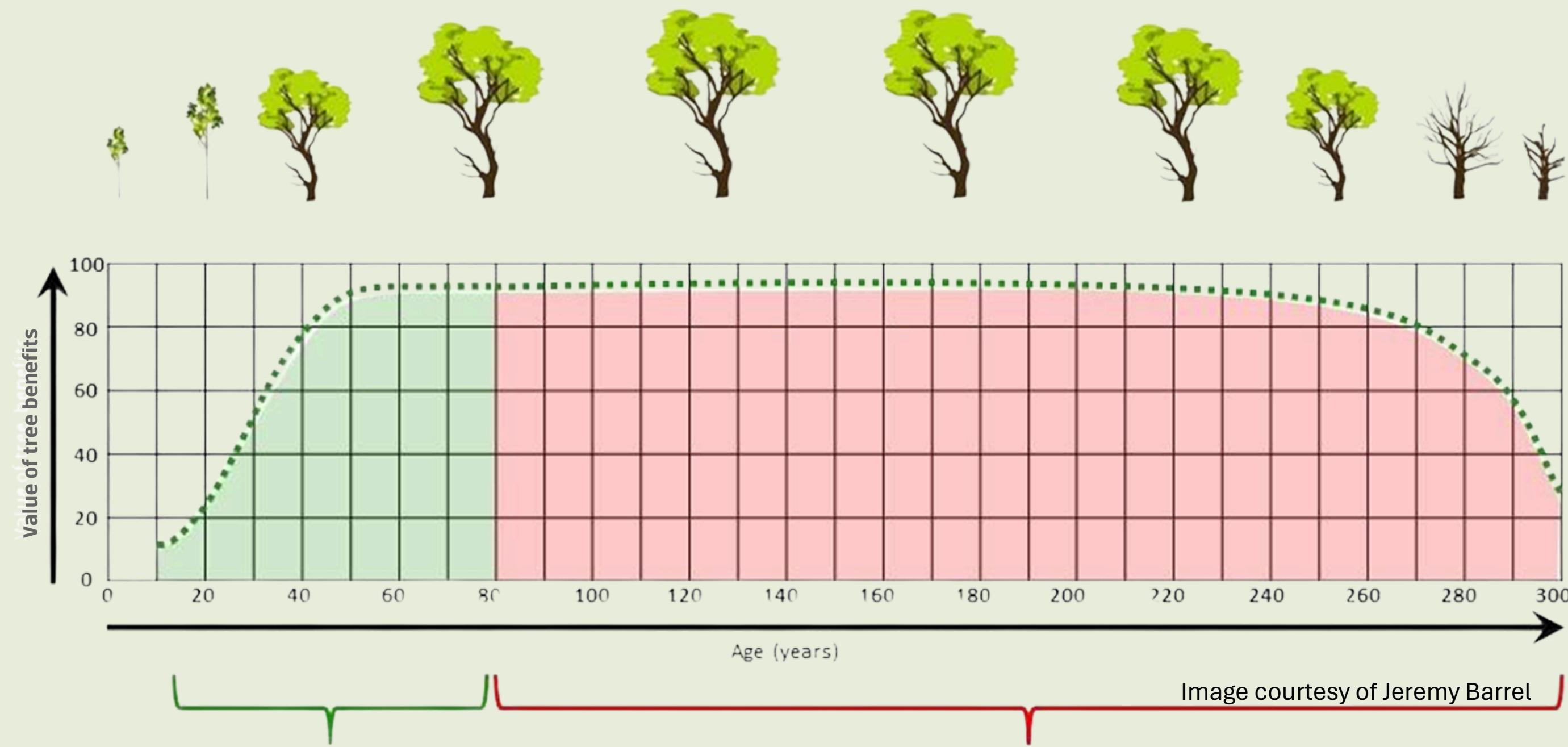

₹1-3

ecosystem services per year

One Mature Tree

₹52,305 –
₹153,514

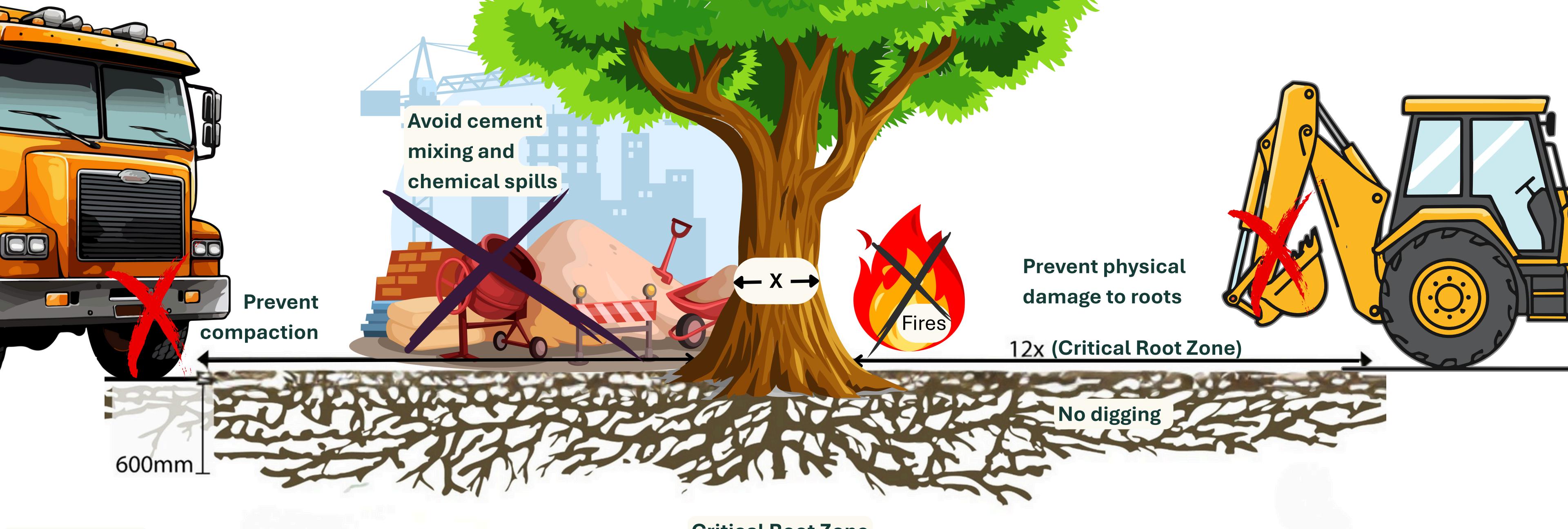
ecosystem services per year

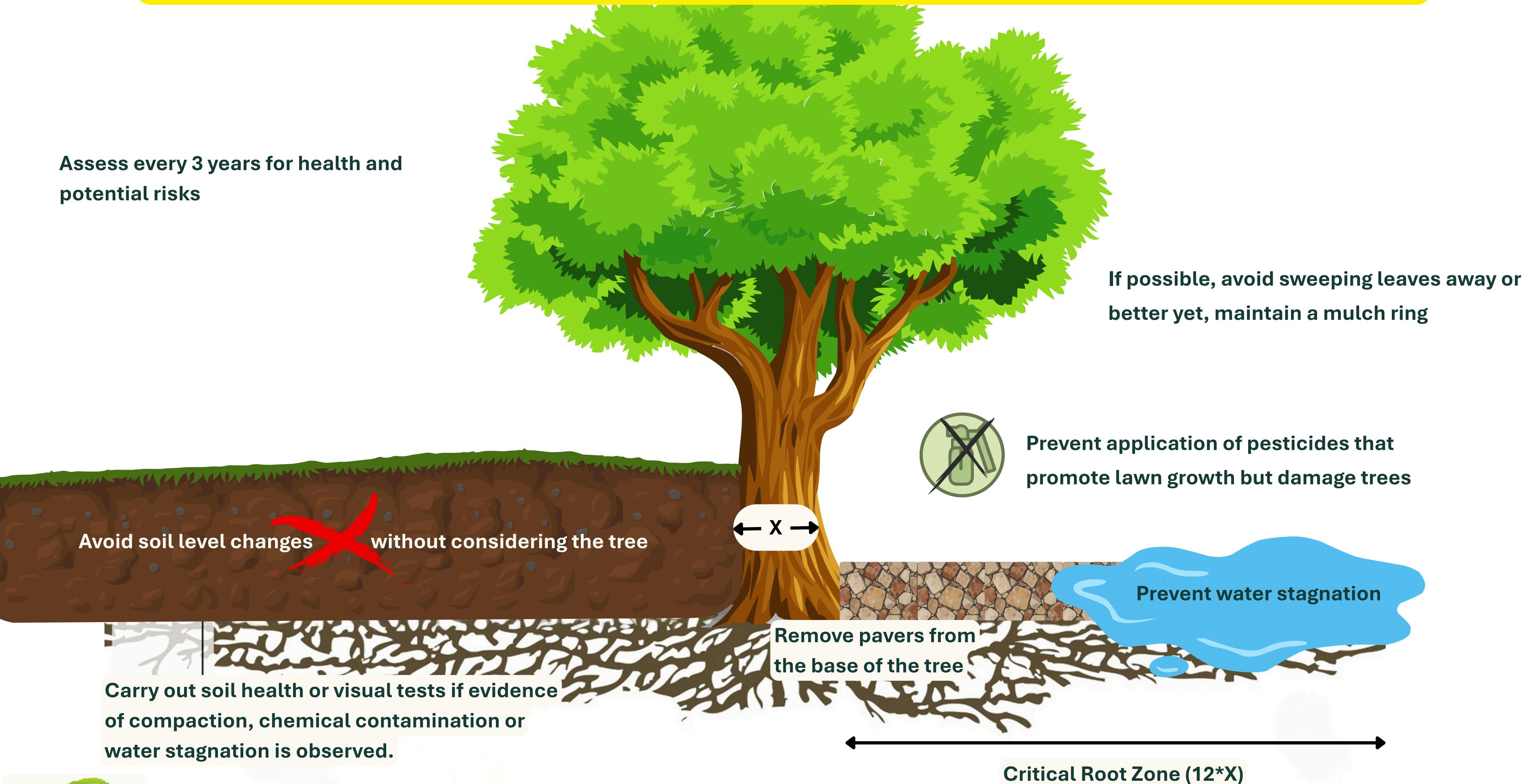


100 seedlings vs One mature tree

Where the Values Come From

Benefits	100 seedlings	One mature tree	Notes (see calculations later)
Carbon Sequestration	<100kgs (<₹90)	500kgs - 2ts (₹450–1,800) + 5 – 20× more/year (₹5–25/year)	A mature tree can store 10–25 kg CO ₂ /year compared to 1–3 kg for 100 seedlings
Air Pollution Removal	~0	₹50k-150k+/year	PM ₁₀ , PM _{2.5} , NO ₂ , SO ₂ , O ₃ , CO Depending on location (~50k for Chennai, ~150k for Delhi)
Cooling & Energy Savings	~0	₹500–₹1,000+/year	Mature tree canopies reduces surface temperatures by 20 –25°C, cutting AC usage 15–20% or by 80–125 kWh/year
Stormwater Management	~0	₹1,800–₹2,500/year	Interception of 20k–25k litres/year due to canopy size and root infiltration capacity, reduces flooding and runoff
Totals	₹1–₹3/year	₹52,305–₹153,514/year	Ratio of 100 seedling compared to 1 mature tree: ~17,000–153,000×


The Time Reality: Maturation Gap


A seedling needs 20–100 years to replace one mature tree's ecosystem services

Managing trees properly includes understanding their basic needs and functions

Pruning and prescribed works only by qualified persons following local municipal guidelines

Managing trees properly includes understanding their basic needs and functions

A good representation of effects of trees

Many of the values cannot be quantified

Climate
Micro-Climate
Temperature
Wind Control
Wind Erosion

Pollution
Air Quality
Oxygen
Pollutants
Global Climate Change
Noise

Barriers & Baffles
Stress, Tension & Insomnia

Biodiversity

Fauna
Habitat
Food
Corridors
Flora
Lichens & Moss
Epiphytes

Value

Property
Patrimony
Returns
Savings
Durability

Road protection
Urban Infrastructure

Water & Soil

Hydrology
Water Quality Improvement
Rain
Storm Water Management
Erosion Control
Soil Improvement
Rock Fall Protection
Gullies Control

Work

Productivity
Creativity
Business

Image
Income
Behavior
Jobs
Heritage

Remarkable Trees
Cultural
Tradition
Spirituality

Community

Livable Cities
Social Cohesion
Community Activities
Social Bonds
Social Identity
Active Living
Place Attachment & Meaning

Economic Stability

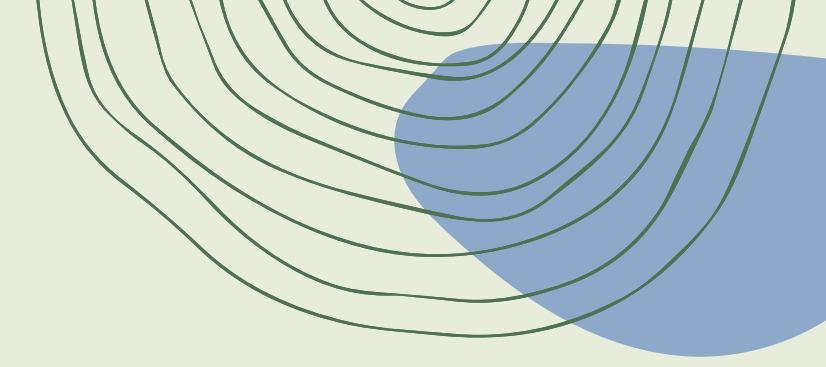
Education
Learning
Concentration
Creativity

Social

Visual
Urban Architecture
Screening
Unity And Harmony
Urban Landscape
Vibrant Sidewalks
Character And Identity
Sense Of Place

Locomotion

Pedestrians
Agreeable Walking Environment
Safer Walking Environment


Cycling

Speed

Calming Effect
Careful Driving

Public Health

Healing
Therapy
Longevity
Physiological
Psychological
Wellness
Mental Health
Stress
Physical Activity
Public Safety
Safe Streets
Sense Of Safety
Violence
Risk

Let's work together to make this
happen

Personal contact

Website

<https://www.treescapes.in/>

Calculation Notes

Carbon Sequestration

- ₹900/tonne CO₂ (midpoint between ₹200–400 voluntary market and ₹800–1,000 CCTS)
- Annual: 5–15 kg CO₂/year per mature tree; Stock: 500–2,000 kg over lifetime
- Source: Costmos (2025); S&P Global (2024)

Air Pollution Removal

- ₹50,000/year (Chennai, lower pollution) to ₹150,000/year (Delhi, higher pollution)
- Source: i-Tree Eco District Park Hauz Khas study: ₹148.6k/tree/year average across 3,707 trees; scaled by local PM/NO₂/SO₂/O₃ concentrations

Cooling & Energy Savings

- 80–125 kWh/year per mature shade tree × ₹7–10/kWh (Tamil Nadu residential tariff)
- Source: McPherson (1993, 2003); Nowak (2017); Hand et al. (2019)

Stormwater Management

- 20,000–25,000 litres intercepted/year @ ₹90–100/m³ avoided municipal treatment cost
- PPP-scaled i-Tree default of US\$2.3/m³ (~₹230/m³ base, conservatively ₹90–100/m³ for India)
- Source: Xiao et al. (2000); i-Tree Eco framework; Tamil Nadu rainfall data

References

1: Carbon sequestration

- Nowak, D. J. 1994. Atmospheric carbon dioxide reduction by urban trees. *J. Environ. Manage.* 37, 207–217.
- Rahman, M. A. et al. 2019. What we know and don't know about the carbon storage and sequestration of urban trees. TDAG / Forest Research.
- Forest Research. 2019. Ecosystem services delivery by large stature urban trees.
- Jaspreet, J. 2020s. Carbon Storage and Sequestration Potential of Trees. PhD thesis using i-Tree Eco.
- India's carbon price references:
 - Voluntary market: About US\$2.35/tCO₂ (~₹200/tCO₂) in 2024–25.
 - Planned compliance market (CCTS): Government and industry targeting ~US\$10/tCO₂e (~₹800–900/tCO₂) as an initial domestic price.

2: Pollution reduction

- Global Pollution Removal Standards
 - Nowak, D. J., Hirabayashi, S., Bodine, A., & Hoehn, R. 2014. Tree and forest effects on air quality and human health in the United States. *Environmental Pollution* 193:119–129.
 - Nowak, D. J. 2020. Urban trees, air quality, and human health. In *Air Pollution and Trees* (Chapter 2).
- India-Specific i-Tree Eco (Delhi): K, Shivani. Evaluating Air Pollutant Removal Efficiency of Trees in District Park, Hauz Khas Using the i-Tree Eco Model for Improved Air Quality. [46 tree species; ₹551M annual value across 3,707 trees]
- Comparative Air Quality & Scaling (Chennai vs Delhi)
 - Greenpeace India. 2024. PM 2.5 Levels in 10 Southern Cities. [PM_{2.5}: Chennai 49 µg/m³ vs Delhi 143 µg/m³; scaling factor 35–50%]
 - Central Pollution Control Board (CPCB). Chennai Air Quality Data & NCAP Performance Assessment. [2024-2025 official monitoring]
- i-Tree Methodology: USDA Forest Service. 2021. Understanding i-Tree: 2021 Summary of Programs and Outputs. GTR-NRS-200.

3: Energy savings

- McPherson, E. G. 2003. Potential energy savings in buildings by an urban tree planting programme in California. *Urban Forestry & Urban Greening* 2(2):73–86.
- McPherson, E. G. 1993. Energy conservation potential of urban tree planting. *Journal of Arboriculture* 19(6):321–331.
- Nowak, D. J. 2017. Residential building energy conservation and avoided power plant emissions from urban trees. *Urban Forestry & Urban Greening* 21:158–165.
- Hand, K. L., Doick, K. J., Moss, J., et al. 2019. Ecosystem services delivery by large stature urban trees. Forest Research.
- **₹ Conversion**: ₹7-10/kWh (Tamil Nadu Electricity Board, 2025) × 80-150 kWh/tree/year = **₹1,000-2,000/tree/year**

4: Stormwater valuation and PPP scaling

- i-Tree Eco and avoided runoff valuation (2.3 USD/m³ default):
 - Nowak, D. J. et al. 2021. Understanding i-Tree: 2021 Summary of Programs and Methods. USDA Forest Service, NRS-GTR-200.
 - i-Tree Support Forum. 2024. “Valuing Avoided Runoff in i-Tree.”
 - i-Tree Eco Precipitation Interception Model Descriptions.
- PPP / cost-of-living scaling for India:
 - World Bank. PPP conversion factor, GDP (LCU per international \$), India.
 - Big Mac Index – India vs United States, 2025.
- Reference for the interception × PPP-scaled value calculation: Xiao, Q. et al. 2000. “Rainfall interception by Santa Monica's municipal urban forest.” *Journal of Arboriculture* 26(6): 306–311 (basis for ~6–7 m³ per tree per year, scaled to 20–25 m³ under Tamil Nadu rainfall).